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EFFECTIVE THERMAL EXPANSION COEFFICIENT IN A 

NONUNIFORM MATERIAL 

V, V. Novikov UDC 539.3 

Lower and upper bounds are determined for the thermal expansion coefficient in a 
nonuniform material. 

Statement of the Prohlem. In determining the effective properties of a nonuniform mate- 
rial, one normally transforms the nonuniform medium to quasihomogeneous one having the re- 
quired properties. The necessary and sufficient condition that this approach be valid is that 
the characteristic size of the nonuniformities I satisfy the inequality 

lo ~ l ~ L, (i) 

where Io is the linear dimension of an elementary cell in the crystal lattice, and L is the 
dimension of the sample of nonuniform material. 

The effective thermal expansion coefficient tensor, in the case of a quasihomogeneous me- 

dium, is given by 

< eu  > = ~ u A T ,  

where AT = T -- To, with To the initial and T the final temperature of the medium. 

the deformation tensor averaged over the volume V ~ L a of the sample: 

1 ~SSeiJ(r)d3r. < ~iJ > = -~- 

Locally the following relations are valid: 

~ii (r) = S.kz (r) ~z (0 + ~ (0 AT, 
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(2) 

< eij > is 

(3) 

(4) 
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o'u (r) = C~;hz (r) (s~ (r) - -  %~ (r) AT). 
(5) 

For a complete review of papers dealing with the determination of the thermal expansion 
coefficient ~ij' one should consult [1-3]. The equation for ~ij given in the literature has 

some restrictions; these are pointed out in [1-4]. One of the most important restrictions is 
that the equation cannot be used when the components of the material have radically different 
properties [4]. Below a method of finding the thermal expansion coefficient is given which 
can be used both for strongly differing and weakly differing components. 

General Theory. As in [5], we consider two states of the nonuniform medium: the case 
when a surface stress is given for AT = 0, and the case when the surface stress on the sample 
vanishes for AT # 0. The stress and deformation fields for the first state are denoted by 

~j(~) and r and for the second state by oij(~) and Eij(~). 

Using the fact that on the one hand we have 

V V 
(6) 

and on the other 

~,!S ~u (r) s~: (r) dar = < ~;: ) ~,j (AT) V, 
V 

(7) 

we find that 

(m/>o~u- V v 

First Method. We rewrite (8) in the form 

L 

�9 _ 1 (1) 1 o.ff/l) 1 ~ (2 )  1 

o (S,) (S,,) 

(9) 

From the linearity of the problem it follows that 

I 1 Si ~ [" cr;~e) (r)d&dx: = B~;~,(xA)T J'.f (/~,(r)d&d&. 
(Si) (S) 

_(i) 
The unknown tensors ~ijkl(Xk) satisfy 

- -  ( 1 )  m ( 2 )  Sdx~) BUAI (&) + So. (xh) ~'U.~t (x~) = Iuh t (&,), 

where IijkZ(Xk) is the unit tensor of the fourth rank. 

rewrite (9) in the form 

(lO) 

(ll) 

With the help of (I0) and (Ii), we can 

1 
~ :  < d :  > . . . .  

L 

If we assume that 

i [ .  (1)~ (1) j _(2)~ ~,(2) 1 t 
. |to~. o~ (xO B.kl(xO T (xO (xO) -fr- 
o L (8) 

( 1 2 )  

8x~ S.!" o'h,(r)d&&, = 0 (13)  
(S) 

so that the double integral in (13) is independent of the coordinate Xk, then the thermal ex- 
pansion coefficient can be determined from (12): 

L 1 

�9 ,,- [ .  (2) -- (i) BH~A(1) m, = - [ - .  to< + s, (xO ( ~  - G~ >1 (,vO] &~. 
0 

(14) 
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The prime on ~ in (14) means that the thermal expansion coefficient has been obtained in ac- 
accordance with assumption (13). 

Second Method. We write (6) in the form 

1 

The integral inside the parentheses is rewritten as 

1 
j" a/'i (r) au (r) dx,, = ]V~z (x~, x ~ ) ~  

L o 

L 
S a~i(r)dx~, 
0 (16 )  

where 

cr (2) (xl, xj), (17) 

1 i~a~}O(r)dxn ou) , x 1 L , = ~.~t ~, ~J) - ~ -  S ~;j(~) d~ .  (18) 
n~ 0 0 

Here  Nk~(Xi ,  x j )  i s  t h e  t h e r m a l  e x p a n s i o n  c o e f f i c i e n t  o f  a c y l i n d e r  p a r a l l e l  t o  t h e  x k a x i s  

o f  h e i g h t  L and c r o s s - s e c t i o n a l  a r e a  d x i d x  j .  

If we use the fact that 

t L I L 

L o {s;{L(r)dx~ = M1~nm(xi, xj) T o 

then (16) can be put into final form 

1 ~i(r)o~u(r)dx~=Nkz(x~, xi)Mhl~m(x~, x~) L 8"nm ('F) dXl~ , 
L (20) 

where 
C(2)~B(2) = c ~) B ~1 (x .  x 3  + 75~(xt, xj) km qnm (X~, Xj). (21) 

After substitution of (20) into (15) we obtain 

1 I L 

(s) 
(22) 

We assume that 

0 : 1 L ,] 
( T  S ) =0, j, Ox~ o 

(23) 

so that the integral inside the parentheses does not depend on the coordinates x i and xj. In 

this case we have from (22) 

a~i= [ !s! Nhz(xi, x~)Mk~nm(xi, xs) dxidxj] Si~nm, (24)  

where the double prime on the thermal expansion coefficient in (24) means that the expression 
is obtained in accordance with assumption (23). 

Examination of the results (14), (24) for the effective thermal expansion coefficient 
! 11 

shows that the exact value lies between aij and ~ij: 

~4 ~=i~ ~ a[i" (25) 
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Isotropic Components. We consider a two-component nonuniform material whose components 
are isotropic and uniform. The two-component material itself may be isotropic or anisotropic, 
depending on the geometry of the components. 

In practical calculations, one normally uses the Young~s modulus E, the shear modulus ~, 
and the Poisson coefficient v in place of elastic Cijk~ and compliance Sijk~ tensors, a con- 
vention that we follow here. 

For isotropic uniform components, ~' of (12) takes the form 

L~ 

0 

where 

~2 -~ M(xh)-- ~(x~) , S~(x~) ; F ( x J - - - - S ~ ( x ~ ) ~ §  v, 
E~ ~ E~ E~ (27) 

and Si(Xk) is the cross-sectional area perpendicular to the x k axis occupied by the i-th com- 

ponent; Si(Xk) = Si(Xk)/Sk; S k is the cross-sectional area of the sample perpendicular to the 
x k axis. 

The upper bound ~j can be written in the form 

~s~ ~ ' (28) 

where 

| ~ ,  

a(~, ~) .g l (~,  xj)+.~L(x~, ~j)+2~,(~, xj) Eo(x~,xj)- <~ 
] 

~ ~ M (x~, x~) -- F (x~, x~) 
(29) 

L 2 (x~, x j) 
E~ 

[ E~ E2 
TL~(x. x j) L~. (x~, xj) M (x~, xj) - -  F (x~, x j) ] ' (30) 

E2 El E~ E, 

and Li(xi, xj) is the length along the x k axis occupied by the i-th component, 

The effective properties of the sample are determined by splitting up the volume V into 
regions which are convenient for integration. In this "smearing" method we first find the 
effective properties of each region and then the properties of the entire sample V. 

In the determination of the upper and lower bounds for the thermal expansion coefficient 
by the above method, together with (26) and (29), one must know the elastic properties of each 
region of the divided sample. Therefore, we give expressions for the Young's modulus, shear 
modulus, and Poisson coefficient obtained for assumptions (13) and (23) [6]: 

i< )/ Eh" = [ ~1 h BtiEi(Xh) E~v~ B~,2 (xJ dxh , 
0 

(32) 

L k --I 

, F 1 f" dxh ] 

0 

(337 
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v ' 1 i ~ B~ (xh) 

0 

(34) 

1 M(x~)--v~F(xu) . Bi~(xh) = 1 F(x~)--v~M(xh) 
B+,t (xn) = "Es M 2 (xh) -- F z (xh) ' E~ Mz (x~) -- F ~ (x~) 

(35) 

I 

(s) 
(36) 

' V " " 1 ~I 

(s) 

1 -- vl -L~ (&, xj) Bm (xz, xj) ] ] dxidxi, 
E~ 

(37) 

1 ~t~= --S-1 -Li (x~,Fh x;) 4-. -Lz (xi,v2 xi) dxidx;, (38) 

,V 1 
Bt3(xi, xj) = Et u '~ (M (xi, xj) - -  F (xz, xj)) -~. 

E2 ] (39) 

I! 

It was shown in [6] that the exact values Ek, ~k, ,~k of the composite lie between Ek, 
I! ~ ! I ! I! ! 

~k' ~k and ~, ~k' ~k' i.e., ~ ~< E k ~< Ek, ~k ~< ~k ~< ~k' Vk ~< ~k ~ ~k" 

Hence the lower bounds for the elastic moduli correspond to the upper bound for the ther- 
mal expansion coefficient, and vice versa. 

As an example, we use the results obtained above to study two different ordered struc- 
tures, whose elementary cells are a sphere embedded in a cube and a cube in a cube (Fig. i). 

Sphere in a Cube. Upper Bound. The sphere in a cube elementary cell is divided into two 
regions: a cylinder parallel to the x k axis with a radius equal to that of the sphere (see 
Fig. i), and the remaining part of the elementary cell. 

For the cylinder, L1(xl, x2) and L2(x~, x=) can be written as 

T[(x~, x2)= k~ ] / ~ ,  L~(x~, x2)= 1--L~(xt, x~), (40) 

! 

where kt = 2 (~-~-/ ITh)T; 92 = ~ @ ~ ;  ~=X~/R;  ml is the volume concentration of the spheres in 
% 

the composite; R is the radius of the sphere. 

Substituting (40) into (28) and (36) through (39), we first find the effective properties 
of the cylinder: thermal expansion coefficient 6", Young's modulus n", shear modulus y", 
Poisson coefficient B"; then the effective thermal expansion coefficient of the elementary 
cell ~" is: 

( l - - k2 )a~+kj i  
(41) 

where 

1 1 - - 1  

+ " = ( . t  + ) ; 
0 0 

(42) 

a:=[+ 1-' - -  ; az = Ez(1 - -  vi)-l; (43) 

rl (9) = (ai - -  a,z) kt V ~  + a~ ; (44) 
(a3 + a~ - -  as) k~ (1 - -  92) + kt (as - -  2a~) V - ~ 9 2  + a4 
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a b C 

g "/o-~ I 

30 -- 5 

| 

Fig. 1 Fig. 2 

Fig. i. Elementary cell of a sphere in a cube (I) and a cube in a 
cube (II): a) elementary cell --I) inclusion, 2) matrix; division 
of the elementary cell into regions for determining the elastic 
properties: b) lower bound; c) upper bound. 

Fig. 2. Dependence of the effective thermal expansion coefficient 
of an epoxy resin--quartz bead system on the volume concentration of 
inclusions: the points refer to experiment [3]; curves 1 and 2 are 
calculated according to (41) and (50); curves 3 and 4, according to 
(55) and (59). Finally, curve 5 refers to the case of an elementary 
cell consisting of a sphere embedded in an infinite body [7]. a.10 -6, 
oc-i 

6 W) = ~ + (~ - ~2) k~ V ~  ~ + 2~ V i-p~ (I - kl r (~ __ a~) k~ V T~ + o.~ (45) 

t 

~q"= 2 j" ~q (p),odp; 
O 

(46 

I 

n~kt ]/1--p z -F n~ 9d.o ] 

0 

(47 

as --=- (1 -- wl)- l ;  aa = (1 --- v2)- l ;  n i  = wiaa --- wzcz~; nz = w,2a~; 

a~'= a3a~ [EIE2 -1 (1 -- v2 -- 2v~) d-  E~ET' (! - -  v~ - -  2v~) + 4vlv21; l 

�9 ata2, k 2=  ~1 1 bt =: (oq - -  o:~) El E.~ \ 4a } I 

(48 

The integrals in (42), (46), and (47) can be done in terms of elementary functions, but 
the expressions are unwieldy, so we do not write these out here. 

Lower Bound. Zn this case the elementary cell is divided into two regions as follows: 
we draw the two planes tangent to the sphere and perpendicular to the x3 axis (see Fig. ic). 
For the properties of the region lying between the tangent planes we introduce the notation: 
q', Young's modulus; y', shear modulus; ~', Poisson coefficiento Then we have 

Sl  (xs) = k~ (1 -2 . -- x3),  S~ (x~) = t -- Sl (x~), 
(49) 

The effective thermal expansion coefficient a' can be written in the form 

E~ B ~ ) a,~al 
~  (6 ' - -~z )k~-~  2k~(1- -kO a l k ~ + ( 1 - - k ~ ) a 2  (5O) 
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where 

~,= - - - - -~- - - - - -~ , - : - - ,  dL; 
( a ~ - - a 2 )  ~ ( 1 - - x a )  n - a ,  

0 

i 

f[( bT ~ - - b ~ < ) k ~ ( l  --x~) 47 b?' ]  dxa 
?]~ == --4 -2  

c~x~ 47 c~x~ 47 c.~ 

(51) 

; (52) 

; (53) 

1 

( + ) ;  ++'-  + +" +' 
[(b, - -  b~.) k~ (1 - - x * )  47 b,] '  - -  [(O,v,--b,v,)k, (1 - -  "-:~x3) 47 b,v~] 2 

- -  ' ~2) ~; b~=E,E2  (1--v]); b, = E i ( 1  v~)-~; b~ = E 2 ( 1 - -  ~ - -~  

~ = E ~ 7  ~ (1 -,~); 
o , r 1 �9 t~ ; ' ~ - '  

c+ ---- 2k.,+b, (1 - -  k,) - -  2k~b3 47 k+b+ (k+ - -  1); c+ = k+b+ 47 (1 - -  k~)Zb+ 47 ko (1 - -  k2) as. 

(54) 

The calculations simplify significantly in the case when the elementary cell is a cube 
embedded in a cube (see Fig. i). 

Cube in a Cube. Upper Bound. The effective thermal expansion coefficient is 

c+" = %(1 - -m~/a)a2+ 6"m~/aa~ 
(I ~/~,~ m~/~ ~ , (55) 

- -  r,ti ) uz  @ 

where 

6"= ~247 ( ~ , -  ~ )  ml/~ + 2 (.,I/~ - . d / ~ )  

vl v~ } alae 
(~  - -  ~J ~-E, E~ 

a ~ §  ( a , - - a 2 ) m l / 3  
; ( 5 6 )  

- -  2 ~ i  _ _ - -  

~ ]-, v 2 ~ (ml/3--m~/a)aia2 
) ,/3 ( l _ m l / 3 ) a 2  . ' E2 m, a~ + 

(57) 

= a~ + (a~ - a~) ml/~ 

Lower Bound. The effective thermal expansion coefficient is 

, 1/3 2 / 3 x  

(58) 

E~ n" (~2--8") al a~ , (59) 
a~ + (a~--a~) m]/3 

where 

[mi E,v~ 47 (1 - -  m~/3) v~E~.] z n,, = [m~/3f i  + ( 1 - - . d / 3 ) E + F -  ~/3 
,~/~E, (a -,~)+ (l - ,nY 3) e2 (I - ,~) 

( + )  ' [m~/avib~47(l_m~/a)v2b2] 
"== [ ( / ) 1 -  b2) m~/3 -~ b2] 2 - -  [(bxv, - -  b2v2) tn~/3 47 bzv2] 

; ( 6 0 )  

(61) 

A comparison of the thermal expansion coefficient ~ calculated from (41), (50), (55), and 
(59) with the experimental value 5s shown in Fig. 2 for a system consisting of quartz in an 
epoxy resin [3]. Also shown in Fig. 2 is the calculated value of ~ for a model of a spherical 

inclusion in an infinite body [7]. 
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From comparison of the calculated values of a according to the different formulas (see 
Fig. 2), one can see that the spread in values is smaller and better describes the experimen- 
tal data for the cube-cube elementary cell. The value of ~ can be calculated approximately 
for a structure with isolated inclusions using (55) and (59) and taking the average ~ = 1/2. 
(a' + ~"). 

NOTATION 

sij' deformation tensor; oij, stress tensor; Cijk~, elastic modulus tensor; Sijkl, com- 

pliance tensor; ~kl, thermal expansion tensor; T, temperature; V, volume; r = xli + x=j + 
x3k, radius vector; xl, x=, x3, coordinates; E, Young's modulus; ~, shear modulus; ~, Poisson 
coefficient; m i = Vi/V, volume concentration of the i-th component; Si(Xk), cross-sectional 
area of the sample occupied by the i-th component and perpendicular to the x k axis; Si(xk) = 
Si(Xk)/S(Xk) ; S(xk) = S1(x k) + S=(Xk) ; Li(xi, xj), length occupied by the i-th component, per- 

pendicular to the x i and xj axes; ~i(xi, xj) = Li(xi, xj)/L(xi, xj); L(xi, xj) = L1(xi, xj) + 

L2(xi, xj). 
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TEMPERATURE CONDITIONS OF THE INTERACTION OF A 

MEDIUM WITH A THIN INCLUSION 

I. Z. Piskozub and G. T. Sulim UDC 536.24.02 

A mathematical model of a thin linear inclusion (layer) with a heat-liberating or 
thermally insulated surface is proposed for the calculation of the temperature 
in arbitrary bodies. 

The influence of thin linear inclusions on the thermophysical state of a plane medium was 
studied in [1-5] using conditions of idealized thermal contact, modeling a thin intermediate 
layer of constant width. In [6], a different approach to such problems was proposed, consist- 
ing in modeling the inclusion in a piecewise-homogeneous plane by lines of temperature discon- 
tinuity. The temperature and temperature fluxes at an arbitrary point of the medium are com- 
pletely determined [6] by the discontinuity functions. The formulation of these expressions 
in the condition of interaction of the medium with the inclusion, relating the values of the 
temperature and heat flux at opposite boundaries of the inclusion, gives a singular integro- 
differential equation for the desired temperature-discontinuity function [6-8]. On the basis 
of [9-10], it may be asserted that it is more accurate to model the inclusion by means of two 
discontinuities, in the temperature and in the heat flux, since in this case heat transfer 
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